1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
| import torch import torch.nn as nn import torch.nn.functional as F
class DoubleConv(nn.Module): def __init__(self, in_ch, out_ch): super(DoubleConv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) )
def forward(self, x): x = self.conv(x) return x
class InConv(nn.Module): def __init__(self, in_ch, out_ch): super(InConv, self).__init__() self.conv = DoubleConv(in_ch, out_ch)
def forward(self, x): x = self.conv(x) return x
class Down(nn.Module): def __init__(self, in_ch, out_ch): super(Down, self).__init__() self.mpconv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_ch, out_ch) )
def forward(self, x): x = self.mpconv(x) return x
class Up(nn.Module): def __init__(self, in_ch, out_ch, bilinear=True): super(Up, self).__init__() if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) else: self.up = nn.ConvTranspose2d(in_ch // 2, in_ch // 2, 2, stride=2)
self.conv = DoubleConv(in_ch, out_ch)
def forward(self, x1, x2): x1 = self.up(x1)
diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2)) x = torch.cat([x2, x1], dim=1) x = self.conv(x) return x
class OutConv(nn.Module): def __init__(self, in_ch, out_ch): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_ch, out_ch, 1)
def forward(self, x): x = self.conv(x) return x
class Unet(nn.Module): def __init__(self, in_channels, classes): super(Unet, self).__init__() self.n_channels = in_channels self.n_classes = classes
self.inc = InConv(in_channels, 64) self.down1 = Down(64, 128) self.down2 = Down(128, 256) self.down3 = Down(256, 512) self.down4 = Down(512, 512) self.up1 = Up(1024, 256) self.up2 = Up(512, 128) self.up3 = Up(256, 64) self.up4 = Up(128, 64) self.outc = OutConv(64, classes)
def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) x = self.outc(x)
return x
|