Coding-CGAN-条件生成对抗网络-基于高阶FCN数据

摘要

main.py包括高阶FCN的处理,生成对抗网络的训练
generate.py使用生成器生成样本

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import argparse
import os
import numpy as np
import math

import torchvision.transforms as transforms
from torchvision.utils import save_image

from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable

import torch.nn as nn
import torch.nn.functional as F
import torch


from scipy.io import loadmat
from torch.utils import data # 导入PyTorch数据工具模块
import random
from scipy.stats import pearsonr


os.makedirs("train_images", exist_ok=True)
os.makedirs("test_images", exist_ok=True)
os.makedirs("save_model", exist_ok=True)

parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=4, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="噪声的维度")
parser.add_argument("--n_classes", type=int, default=2, help="类别数量")
parser.add_argument("--img_size", type=int, default=116, help="功能连接矩阵的维度")
parser.add_argument("--channels", type=int, default=1, help="矩阵通道")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)

img_shape = (opt.channels, opt.img_size, opt.img_size)

cuda = True if torch.cuda.is_available() else False

class my_dataset(data.Dataset):
def __init__(self, Hig_X,label_):
self.Hig_X = np.expand_dims(Hig_X,1) # 加上通道数
self.label = label_

def __getitem__(self, index):
X = self.Hig_X[index] # 获取高阶FCN
label = self.label[index]
return X,label
def __len__(self):
return self.Hig_X.shape[0] # 返回数据集的长度


def calculate_similarity(matrix1, matrix2):
correlation, _ = pearsonr(matrix1.flatten(), matrix2.flatten())
return correlation


# 精度判断,即计算两个矩阵的相关系数
def calculate_accuracy(generator, dataloader, device, val_subjects=None):
generator.eval()
correct_predictions = 0

for batch_idx, (batch_matrix) in enumerate(dataloader):
matrix = batch_matrix.to(device)
size = matrix.size(0)
random_noise = torch.randn(size, 100).to(device=device)

with torch.no_grad():
gen_matrix = generator(random_noise)

for i in range(size):
similarity = calculate_similarity(gen_matrix[i].cpu().numpy(), matrix[i].cpu().numpy())

# 阈值是一个经验值,根据实际情况调整
if similarity > 0.6 and (val_subjects is None or batch_idx in val_subjects):
correct_predictions += 1

accuracy = correct_predictions / len(dataloader.dataset)
return accuracy

class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()

self.label_emb = nn.Embedding(opt.n_classes, opt.n_classes)

def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers

self.model = nn.Sequential(
*block(opt.latent_dim + opt.n_classes, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh()
)

def forward(self, noise, labels):
# Concatenate label embedding and image to produce input
gen_input = torch.cat((self.label_emb(labels), noise), -1)
img = self.model(gen_input)
img = img.view(img.size(0), *img_shape)
return img


class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()

self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes)

self.model = nn.Sequential(
nn.Linear(opt.n_classes + int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 512),
nn.Dropout(0.4),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 512),
nn.Dropout(0.4),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 1),
)

def forward(self, img, labels):
# Concatenate label embedding and image to produce input
d_in = torch.cat((img.view(img.size(0), -1), self.label_embedding(labels)), -1)
validity = self.model(d_in)
return validity


# Loss functions
adversarial_loss = torch.nn.MSELoss()

# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()

if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()

# Configure data loader

# 原始文件路径
fMRI_file_path = './/ROISignals_insomnia_aal116.mat'

# 加载数据
fMRI_data = loadmat(fMRI_file_path)['ROISignals']

# 正常人为1,病人为0
fMRI_label = torch.cat((torch.ones(32,1),torch.zeros(30,1)),dim=0).squeeze()

# 低阶矩阵计算
Low_X_ = []
for i in range(fMRI_data.shape[2]):
temp = np.corrcoef(fMRI_data[:,:,i],rowvar=False)
Low_X_.append(temp)
Low_X = np.array(Low_X_) #(62,116,116)

# 高阶矩阵计算
Hig_X_ = []
for i in range(Low_X.shape[0]):
temp = np.corrcoef(Low_X[:,:,i],rowvar=False)
Hig_X_.append(temp)
Hig_X = np.array(Hig_X_) #(62,116,116)


random_index = np.random.permutation(len(fMRI_label))
Hig_X = Hig_X[random_index]
fMRI_label = fMRI_label[random_index]

train_data = Hig_X[:50]
train_label = fMRI_label[:50]
test_data = Hig_X[50:]
test_label = fMRI_label[:50]

train_dataset = my_dataset(train_data,train_label)
test_dataset = my_dataset(test_data,test_label)

train_loader = data.DataLoader(train_dataset,batch_size=opt.batch_size,shuffle=True)
test_loader = data.DataLoader(test_dataset,batch_size=opt.batch_size,shuffle=False)

# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor

# ----------
# Training
# ----------

for epoch in range(opt.n_epochs):
for i, (imgs, labels) in enumerate(train_loader):

batch_size = imgs.shape[0]

# Adversarial ground truths
valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False)
fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)

# Configure input
real_imgs = Variable(imgs.type(FloatTensor))
labels = Variable(labels.type(LongTensor))

# -----------------
# Train Generator
# -----------------

optimizer_G.zero_grad()

# Sample noise and labels as generator input
z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))
gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, batch_size)))

# Generate a batch of images
gen_imgs = generator(z, gen_labels)

# Loss measures generator's ability to fool the discriminator
validity = discriminator(gen_imgs, gen_labels)
g_loss = adversarial_loss(validity, valid)

g_loss.backward()
optimizer_G.step()

# ---------------------
# Train Discriminator
# ---------------------

optimizer_D.zero_grad()

# Loss for real images
validity_real = discriminator(real_imgs, labels)
d_real_loss = adversarial_loss(validity_real, valid)

# Loss for fake images
validity_fake = discriminator(gen_imgs.detach(), gen_labels)
d_fake_loss = adversarial_loss(validity_fake, fake)

# Total discriminator loss
d_loss = (d_real_loss + d_fake_loss) / 2

d_loss.backward()
optimizer_D.step()

print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(train_loader), d_loss.item(), g_loss.item())
)

batches_done = epoch * len(train_loader) + i

# 存储训练过程的结果
if batches_done % opt.sample_interval == 0: #一个epoch中每隔多少间隔保存一次
gen_imgs_normalized = (gen_imgs - gen_imgs.min()) / (gen_imgs.max() - gen_imgs.min())
save_image(gen_imgs_normalized.data[:25], "train_images/%d.png" % batches_done, nrow=5, normalize=False)

# 测试过程

with torch.no_grad():
best_acc = 0
generator.eval()
correct_predictions = 0
for imgs, label in test_loader:
z = Variable(FloatTensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))
gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, imgs.shape[0])))
gen_imgs = generator(z, gen_labels)

for i in range(imgs.shape[0]):
similarity = calculate_similarity(gen_imgs[i].cpu().numpy(), imgs[i].cpu().numpy())

# 阈值是一个经验值,根据实际情况调整
if similarity > 0.6:
correct_predictions += 1

accuracy = correct_predictions / len(test_loader.dataset)
# 保存epoch中精度最好的模型
if best_acc < accuracy:
best_acc = accuracy
#保存模型
torch.save(generator.state_dict(), "save_model/best_model.pth")

print('epoch:'+str(epoch)+' 测试集acc:'+str(accuracy)+" best_acc:"+str(best_acc))
gen_imgs_normalized = (gen_imgs - gen_imgs.min()) / (gen_imgs.max() - gen_imgs.min())
save_image(gen_imgs_normalized.data[:25], "test_images/acc_{}epoch_{}.png".format(accuracy,epoch), nrow=5, normalize=False)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import argparse
import torch.nn as nn
import torch.nn.functional as F
import torch
import numpy as np
from torch.autograd import Variable
from torchvision.utils import save_image
import os

parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=4, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="噪声的维度")
parser.add_argument("--n_classes", type=int, default=2, help="类别数量")
parser.add_argument("--img_size", type=int, default=116, help="功能连接矩阵的维度")
parser.add_argument("--channels", type=int, default=1, help="矩阵通道")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)
img_shape = (opt.channels, opt.img_size, opt.img_size)
cuda = True if torch.cuda.is_available() else False
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()

self.label_emb = nn.Embedding(opt.n_classes, opt.n_classes)

def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers

self.model = nn.Sequential(
*block(opt.latent_dim + opt.n_classes, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh()
)

def forward(self, noise, labels):
# Concatenate label embedding and image to produce input
gen_input = torch.cat((self.label_emb(labels), noise), -1)
img = self.model(gen_input)
img = img.view(img.size(0), *img_shape)
return img

FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor

os.makedirs("Generated_samples", exist_ok=True)

generator = Generator()
generator.cuda()
# 指定保存的模型文件路径
model_path = 'save_model\\best_model.pth'

# 加载保存的模型状态字典
generator.load_state_dict(torch.load(model_path))

# 将模型设置为评估模式
generator.eval()
# 设置生成样本数
batch_size = 25

z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))
gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, batch_size)))
gen_imgs = generator(z , gen_labels)
# 标准化
gen_imgs_normalized = (gen_imgs - gen_imgs.min()) / (gen_imgs.max() - gen_imgs.min())
# 存储样本和标签
np.savez('Generated_samples/Generated_samples.npz', array1=gen_imgs.detach().cpu(), array2=gen_labels.detach().cpu())
#存储图片
save_image(gen_imgs_normalized.data[:25], "Generated_samples/acc_epoch_.png", nrow=25, normalize=False)