1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
| import argparse import os import numpy as np import math
import torchvision.transforms as transforms from torchvision.utils import save_image
from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable
import torch.nn as nn import torch.nn.functional as F import torch
from scipy.io import loadmat from torch.utils import data import random from scipy.stats import pearsonr
os.makedirs("train_images", exist_ok=True) os.makedirs("test_images", exist_ok=True) os.makedirs("save_model", exist_ok=True)
parser = argparse.ArgumentParser() parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training") parser.add_argument("--batch_size", type=int, default=4, help="size of the batches") parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient") parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation") parser.add_argument("--latent_dim", type=int, default=100, help="噪声的维度") parser.add_argument("--n_classes", type=int, default=2, help="类别数量") parser.add_argument("--img_size", type=int, default=116, help="功能连接矩阵的维度") parser.add_argument("--channels", type=int, default=1, help="矩阵通道") parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling") opt = parser.parse_args() print(opt)
img_shape = (opt.channels, opt.img_size, opt.img_size)
cuda = True if torch.cuda.is_available() else False
class my_dataset(data.Dataset): def __init__(self, Hig_X,label_): self.Hig_X = np.expand_dims(Hig_X,1) self.label = label_
def __getitem__(self, index): X = self.Hig_X[index] label = self.label[index] return X,label def __len__(self): return self.Hig_X.shape[0]
def calculate_similarity(matrix1, matrix2): correlation, _ = pearsonr(matrix1.flatten(), matrix2.flatten()) return correlation
def calculate_accuracy(generator, dataloader, device, val_subjects=None): generator.eval() correct_predictions = 0
for batch_idx, (batch_matrix) in enumerate(dataloader): matrix = batch_matrix.to(device) size = matrix.size(0) random_noise = torch.randn(size, 100).to(device=device)
with torch.no_grad(): gen_matrix = generator(random_noise)
for i in range(size): similarity = calculate_similarity(gen_matrix[i].cpu().numpy(), matrix[i].cpu().numpy())
if similarity > 0.6 and (val_subjects is None or batch_idx in val_subjects): correct_predictions += 1
accuracy = correct_predictions / len(dataloader.dataset) return accuracy
class Generator(nn.Module): def __init__(self): super(Generator, self).__init__()
self.label_emb = nn.Embedding(opt.n_classes, opt.n_classes)
def block(in_feat, out_feat, normalize=True): layers = [nn.Linear(in_feat, out_feat)] if normalize: layers.append(nn.BatchNorm1d(out_feat, 0.8)) layers.append(nn.LeakyReLU(0.2, inplace=True)) return layers
self.model = nn.Sequential( *block(opt.latent_dim + opt.n_classes, 128, normalize=False), *block(128, 256), *block(256, 512), *block(512, 1024), nn.Linear(1024, int(np.prod(img_shape))), nn.Tanh() )
def forward(self, noise, labels): gen_input = torch.cat((self.label_emb(labels), noise), -1) img = self.model(gen_input) img = img.view(img.size(0), *img_shape) return img
class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__()
self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes)
self.model = nn.Sequential( nn.Linear(opt.n_classes + int(np.prod(img_shape)), 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 1), )
def forward(self, img, labels): d_in = torch.cat((img.view(img.size(0), -1), self.label_embedding(labels)), -1) validity = self.model(d_in) return validity
adversarial_loss = torch.nn.MSELoss()
generator = Generator() discriminator = Discriminator()
if cuda: generator.cuda() discriminator.cuda() adversarial_loss.cuda()
fMRI_file_path = './/ROISignals_insomnia_aal116.mat'
fMRI_data = loadmat(fMRI_file_path)['ROISignals']
fMRI_label = torch.cat((torch.ones(32,1),torch.zeros(30,1)),dim=0).squeeze()
Low_X_ = [] for i in range(fMRI_data.shape[2]): temp = np.corrcoef(fMRI_data[:,:,i],rowvar=False) Low_X_.append(temp) Low_X = np.array(Low_X_)
Hig_X_ = [] for i in range(Low_X.shape[0]): temp = np.corrcoef(Low_X[:,:,i],rowvar=False) Hig_X_.append(temp) Hig_X = np.array(Hig_X_)
random_index = np.random.permutation(len(fMRI_label)) Hig_X = Hig_X[random_index] fMRI_label = fMRI_label[random_index]
train_data = Hig_X[:50] train_label = fMRI_label[:50] test_data = Hig_X[50:] test_label = fMRI_label[:50]
train_dataset = my_dataset(train_data,train_label) test_dataset = my_dataset(test_data,test_label)
train_loader = data.DataLoader(train_dataset,batch_size=opt.batch_size,shuffle=True) test_loader = data.DataLoader(test_dataset,batch_size=opt.batch_size,shuffle=False)
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
for epoch in range(opt.n_epochs): for i, (imgs, labels) in enumerate(train_loader):
batch_size = imgs.shape[0]
valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False) fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)
real_imgs = Variable(imgs.type(FloatTensor)) labels = Variable(labels.type(LongTensor))
optimizer_G.zero_grad()
z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim)))) gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, batch_size)))
gen_imgs = generator(z, gen_labels)
validity = discriminator(gen_imgs, gen_labels) g_loss = adversarial_loss(validity, valid)
g_loss.backward() optimizer_G.step()
optimizer_D.zero_grad()
validity_real = discriminator(real_imgs, labels) d_real_loss = adversarial_loss(validity_real, valid)
validity_fake = discriminator(gen_imgs.detach(), gen_labels) d_fake_loss = adversarial_loss(validity_fake, fake)
d_loss = (d_real_loss + d_fake_loss) / 2
d_loss.backward() optimizer_D.step()
print( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, opt.n_epochs, i, len(train_loader), d_loss.item(), g_loss.item()) )
batches_done = epoch * len(train_loader) + i
if batches_done % opt.sample_interval == 0: gen_imgs_normalized = (gen_imgs - gen_imgs.min()) / (gen_imgs.max() - gen_imgs.min()) save_image(gen_imgs_normalized.data[:25], "train_images/%d.png" % batches_done, nrow=5, normalize=False)
with torch.no_grad(): best_acc = 0 generator.eval() correct_predictions = 0 for imgs, label in test_loader: z = Variable(FloatTensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim)))) gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, imgs.shape[0]))) gen_imgs = generator(z, gen_labels)
for i in range(imgs.shape[0]): similarity = calculate_similarity(gen_imgs[i].cpu().numpy(), imgs[i].cpu().numpy())
if similarity > 0.6: correct_predictions += 1
accuracy = correct_predictions / len(test_loader.dataset) if best_acc < accuracy: best_acc = accuracy torch.save(generator.state_dict(), "save_model/best_model.pth")
print('epoch:'+str(epoch)+' 测试集acc:'+str(accuracy)+" best_acc:"+str(best_acc)) gen_imgs_normalized = (gen_imgs - gen_imgs.min()) / (gen_imgs.max() - gen_imgs.min()) save_image(gen_imgs_normalized.data[:25], "test_images/acc_{}epoch_{}.png".format(accuracy,epoch), nrow=5, normalize=False)
|