Coding-3D医学图像分类-基于3D-Resnet

摘要

训练一个3D医学图像分类神经网络(3D-Resnet),包括:
1.自定义dataload制作
2.网络定义(3D-Resnet)
3.训练过程
4.测试过程
5.模型评估(准确率)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch
import torch.nn as nn
import numpy as np
from torch.utils.data import Dataset
import os

class mydatasets(Dataset):
def __init__(self, data,label):
self.data = data # 加上通道数
self.label = label

def __getitem__(self, index):
data = self.data[index] # 获取高阶FCN
label = self.label[index]
return data,label
def __len__(self):
return self.data.shape[0] # 返回数据集的长度


class BasicBlock(nn.Module):
expansion = 1

def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock, self).__init__()

# 第一个卷积层
self.conv1 = nn.Conv3d(
in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False
)
self.bn1 = nn.BatchNorm3d(out_channels)
self.relu = nn.ReLU(inplace=True)

# 第二个卷积层
self.conv2 = nn.Conv3d(
out_channels,
out_channels * self.expansion,
kernel_size=3,
stride=1,
padding=1,
bias=False,
)
self.bn2 = nn.BatchNorm3d(out_channels * self.expansion)

# 残差连接(shortcut connection)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels * self.expansion:
self.shortcut = nn.Sequential(
nn.Conv3d(
in_channels,
out_channels * self.expansion,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm3d(out_channels * self.expansion),
)

def forward(self, x):
residual = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)

out += self.shortcut(residual)
out = self.relu(out)

return out


class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()

self.in_channels = 64

# 第一个卷积层
self.conv1 = nn.Conv3d(
1, 64, kernel_size=3, stride=1, padding=1, bias=False
)
self.bn1 = nn.BatchNorm3d(64)
self.relu = nn.ReLU(inplace=True)

# ResNet的四个阶段
self.layer1 = self.make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self.make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self.make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self.make_layer(block, 512, num_blocks[3], stride=2)

# 全局平均池化层和全连接层
self.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)

def make_layer(self, block, out_channels, num_blocks, stride):
layers = []
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
for _ in range(1, num_blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)

def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)

out = self.avg_pool(out)
out = torch.flatten(out, 1)
out = self.fc(out)

return out

def ResNet18(num_classes=10):
return ResNet(BasicBlock, [2, 2, 2, 2], num_classes)

def data_load(data_path,batch_size):

data_label = np.load(data_path,batch_size)

torch.manual_seed(9)
random_index = np.random.permutation(data_label['data'].shape[0])
data = torch.from_numpy(data_label['data'][random_index]).float()
label= torch.from_numpy(data_label['label'][random_index]).float()

train_data = data[:160]
train_label = label[:160]
test_data = data[160:]
test_label = label[160:]

train_dataset = mydatasets(train_data,train_label)
test_dataset = mydatasets(test_data,test_label)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=4, shuffle=True) # 创建训练数据加载器
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=4, shuffle=False) # 创建测试数据加载器

return train_loader,test_loader


def train(model, train_loader, criterion, optimizer, device):
model.train() # 设置模型为训练模式
train_loss = 0
for data, label in train_loader:
data = data.to(device)
data = torch.unsqueeze(data,1)
optimizer.zero_grad() # 清除梯度
output = model(data) # 前向传播
loss = criterion(output, label.to(device).long()) # 计算损失
loss.backward() # 反向传播,计算梯度
optimizer.step() # 更新模型参数
train_loss += loss.item() * data.size(0)

train_loss /= len(train_loader.dataset) # 计算平均训练损失
return train_loss

def validate(model, val_loader, criterion, device):
model.eval() # 设置模型为评估模式
val_loss = 0
correct = 0 #正确个数
total = 0 #总数
with torch.no_grad():
for data, label in val_loader:
data = data.to(device)
data = torch.unsqueeze(data,1)
output = model(data) # 前向传播

_, predicted = torch.max(output.data, 1)
total += label.size(0)
correct += (predicted == label.to(device)).sum().item()
loss = criterion(output, label.to(device).long()) # 计算损失
val_loss += loss.item() * data.size(0)

accuracy = 100 * correct / total
# print('Accuracy on the test set: %d %%' % accuracy)
val_loss /= len(val_loader.dataset) # 计算平均验证损失
return accuracy,val_loss

if __name__ == "__main__":
epoch_times = 100
batch_size = 4
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_loader,test_loader = data_load('/home/yeshixin/work/newwork/DDPM-main/data/mri_ad90_cn113_data_label_normal.npz',batch_size)
model = ResNet18(2)
model.to(device)
# criterion = nn.MSELoss()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),lr=0.001)


train_losses = []
val_losses = []
best_val_loss = np.inf
best_val_acc = 0
if not os.path.exists('ckpt'):
os.mkdir('./ckpt')
# 训练模型
for epoch in range(epoch_times):
train_loss = train(model, train_loader, criterion, optimizer, device) # 训练模型
val_acc,val_loss = validate(model, test_loader, criterion, device) # 验证模型
train_losses.append(train_loss) # 保存训练损失
val_losses.append(val_loss) # 保存验证损失
# 存储最小损失模型
if val_loss < best_val_loss:
best_val_loss = val_loss
best_model = model.state_dict()
torch.save(best_model, 'ckpt/BestLoss_'+str(best_val_loss)+'_model.ckpt') # 保存最佳模型参数
print("best_val_loss: " + str(best_val_loss))
with open("ckpt/model_loss.txt", "w") as f:
f.write(str(val_loss))
# 存储最大准确率模型
if val_acc > best_val_acc:
best_val_acc = val_acc
best_model = model.state_dict()
torch.save(best_model, 'ckpt/BestAcc_'+str(best_val_acc)+'_model.ckpt') # 保存最佳模型参数
print("best_val_acc: " + str(best_val_acc))
with open("ckpt/model_acc.txt", "w") as f:
f.write(str(best_val_acc))

print('Epoch [{}/{}], Train Loss: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f} %'.format(epoch+1, epoch_times, train_loss, val_loss,val_acc))