Coding-条件Unet-基于注意力机制

摘要

可将时间条件和类别条件引入模型,共两个文件:unet.py,test.py,模型为

b=Unet(t,c,a)b=Unet(t,c,a)

其中bb是输出,tt是时间条件,cc是类别条件,aa是输入

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.nn.modules.normalization import GroupNorm


def get_norm(norm, num_channels, num_groups):
if norm == "in":
return nn.InstanceNorm2d(num_channels, affine=True)
elif norm == "bn":
return nn.BatchNorm2d(num_channels)
elif norm == "gn":
return nn.GroupNorm(num_groups, num_channels)
elif norm is None:
return nn.Identity()
else:
raise ValueError("unknown normalization type")


class PositionalEmbedding(nn.Module):
__doc__ = r"""Computes a positional embedding of timesteps.

Input:
x: tensor of shape (N)
Output:
tensor of shape (N, dim)
Args:
dim (int): embedding dimension
scale (float): linear scale to be applied to timesteps. Default: 1.0
"""

def __init__(self, dim, scale=1.0):
super().__init__()
assert dim % 2 == 0
self.dim = dim
self.scale = scale

def forward(self, x):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / half_dim
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
emb = torch.outer(x * self.scale, emb)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb


class Downsample(nn.Module):
__doc__ = r"""Downsamples a given tensor by a factor of 2. Uses strided convolution. Assumes even height and width.

Input:
x: tensor of shape (N, in_channels, H, W)
time_emb: ignored
y: ignored
Output:
tensor of shape (N, in_channels, H // 2, W // 2)
Args:
in_channels (int): number of input channels
"""

def __init__(self, in_channels):
super().__init__()

self.downsample = nn.Conv2d(in_channels, in_channels, 3, stride=2, padding=1)

def forward(self, x, time_emb, y):
if x.shape[2] % 2 == 1:
raise ValueError("downsampling tensor height should be even")
if x.shape[3] % 2 == 1:
raise ValueError("downsampling tensor width should be even")

return self.downsample(x)


class Upsample(nn.Module):
__doc__ = r"""Upsamples a given tensor by a factor of 2. Uses resize convolution to avoid checkerboard artifacts.

Input:
x: tensor of shape (N, in_channels, H, W)
time_emb: ignored
y: ignored
Output:
tensor of shape (N, in_channels, H * 2, W * 2)
Args:
in_channels (int): number of input channels
"""

def __init__(self, in_channels):
super().__init__()

self.upsample = nn.Sequential(
nn.Upsample(scale_factor=2, mode="nearest"),
nn.Conv2d(in_channels, in_channels, 3, padding=1),
)

def forward(self, x, time_emb, y):
return self.upsample(x)


class AttentionBlock(nn.Module):
__doc__ = r"""Applies QKV self-attention with a residual connection.

Input:
x: tensor of shape (N, in_channels, H, W)
norm (string or None): which normalization to use (instance, group, batch, or none). Default: "gn"
num_groups (int): number of groups used in group normalization. Default: 32
Output:
tensor of shape (N, in_channels, H, W)
Args:
in_channels (int): number of input channels
"""
def __init__(self, in_channels, norm="gn", num_groups=32):
super().__init__()

self.in_channels = in_channels
self.norm = get_norm(norm, in_channels, num_groups)
self.to_qkv = nn.Conv2d(in_channels, in_channels * 3, 1)
self.to_out = nn.Conv2d(in_channels, in_channels, 1)

def forward(self, x):
b, c, h, w = x.shape
q, k, v = torch.split(self.to_qkv(self.norm(x)), self.in_channels, dim=1)

q = q.permute(0, 2, 3, 1).view(b, h * w, c)
k = k.view(b, c, h * w)
v = v.permute(0, 2, 3, 1).view(b, h * w, c)

dot_products = torch.bmm(q, k) * (c ** (-0.5))
assert dot_products.shape == (b, h * w, h * w)

attention = torch.softmax(dot_products, dim=-1)
out = torch.bmm(attention, v)
assert out.shape == (b, h * w, c)
out = out.view(b, h, w, c).permute(0, 3, 1, 2)

return self.to_out(out) + x


class ResidualBlock(nn.Module):
__doc__ = r"""Applies two conv blocks with resudual connection. Adds time and class conditioning by adding bias after first convolution.

Input:
x: tensor of shape (N, in_channels, H, W)
time_emb: time embedding tensor of shape (N, time_emb_dim) or None if the block doesn't use time conditioning
y: classes tensor of shape (N) or None if the block doesn't use class conditioning
Output:
tensor of shape (N, out_channels, H, W)
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
time_emb_dim (int or None): time embedding dimension or None if the block doesn't use time conditioning. Default: None
num_classes (int or None): number of classes or None if the block doesn't use class conditioning. Default: None
activation (function): activation function. Default: torch.nn.functional.relu
norm (string or None): which normalization to use (instance, group, batch, or none). Default: "gn"
num_groups (int): number of groups used in group normalization. Default: 32
use_attention (bool): if True applies AttentionBlock to the output. Default: False
"""

def __init__(
self,
in_channels,
out_channels,
dropout,
time_emb_dim=None,
num_classes=None,
activation=F.relu,
norm="gn",
num_groups=32,
use_attention=False,
):
super().__init__()

self.activation = activation

self.norm_1 = get_norm(norm, in_channels, num_groups)
self.conv_1 = nn.Conv2d(in_channels, out_channels, 3, padding=1)

self.norm_2 = get_norm(norm, out_channels, num_groups)
self.conv_2 = nn.Sequential(
nn.Dropout(p=dropout),
nn.Conv2d(out_channels, out_channels, 3, padding=1),
)

self.time_bias = nn.Linear(time_emb_dim, out_channels) if time_emb_dim is not None else None
self.class_bias = nn.Embedding(num_classes, out_channels) if num_classes is not None else None

self.residual_connection = nn.Conv2d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity()
self.attention = nn.Identity() if not use_attention else AttentionBlock(out_channels, norm, num_groups)

def forward(self, x, time_emb=None, y=None):
out = self.activation(self.norm_1(x))
out = self.conv_1(out)

if self.time_bias is not None:
if time_emb is None:
raise ValueError("time conditioning was specified but time_emb is not passed")
out += self.time_bias(self.activation(time_emb))[:, :, None, None]

if self.class_bias is not None:
if y is None:
raise ValueError("class conditioning was specified but y is not passed")

out += self.class_bias(y)[:, :, None, None]

out = self.activation(self.norm_2(out))
out = self.conv_2(out) + self.residual_connection(x)
out = self.attention(out)

return out


class UNet(nn.Module):
__doc__ = """UNet model used to estimate noise.

Input:
x: tensor of shape (N, in_channels, H, W)
time_emb: time embedding tensor of shape (N, time_emb_dim) or None if the block doesn't use time conditioning
y: classes tensor of shape (N) or None if the block doesn't use class conditioning
Output:
tensor of shape (N, out_channels, H, W)
Args:
img_channels (int): number of image channels
base_channels (int): number of base channels (after first convolution)
channel_mults (tuple): tuple of channel multiplers. Default: (1, 2, 4, 8)
time_emb_dim (int or None): time embedding dimension or None if the block doesn't use time conditioning. Default: None
time_emb_scale (float): linear scale to be applied to timesteps. Default: 1.0
num_classes (int or None): number of classes or None if the block doesn't use class conditioning. Default: None
activation (function): activation function. Default: torch.nn.functional.relu
dropout (float): dropout rate at the end of each residual block
attention_resolutions (tuple): list of relative resolutions at which to apply attention. Default: ()
norm (string or None): which normalization to use (instance, group, batch, or none). Default: "gn"
num_groups (int): number of groups used in group normalization. Default: 32
initial_pad (int): initial padding applied to image. Should be used if height or width is not a power of 2. Default: 0
"""

def __init__(
self,
img_channels,
base_channels,
channel_mults=(1, 2, 4, 8),
num_res_blocks=2,
time_emb_dim=None,
time_emb_scale=1.0,
num_classes=None,
activation=F.relu,
dropout=0.1,
attention_resolutions=(),
norm="gn",
num_groups=32,
initial_pad=0,
):
super().__init__()

self.activation = activation
self.initial_pad = initial_pad

self.num_classes = num_classes
self.time_mlp = nn.Sequential(
PositionalEmbedding(base_channels, time_emb_scale),
nn.Linear(base_channels, time_emb_dim),
nn.SiLU(),
nn.Linear(time_emb_dim, time_emb_dim),
) if time_emb_dim is not None else None

self.init_conv = nn.Conv2d(img_channels, base_channels, 3, padding=1)

self.downs = nn.ModuleList()
self.ups = nn.ModuleList()

channels = [base_channels]
now_channels = base_channels

for i, mult in enumerate(channel_mults):
out_channels = base_channels * mult

for _ in range(num_res_blocks):
self.downs.append(ResidualBlock(
now_channels,
out_channels,
dropout,
time_emb_dim=time_emb_dim,
num_classes=num_classes,
activation=activation,
norm=norm,
num_groups=num_groups,
use_attention=i in attention_resolutions,
))
now_channels = out_channels
channels.append(now_channels)

if i != len(channel_mults) - 1:
self.downs.append(Downsample(now_channels))
channels.append(now_channels)


self.mid = nn.ModuleList([
ResidualBlock(
now_channels,
now_channels,
dropout,
time_emb_dim=time_emb_dim,
num_classes=num_classes,
activation=activation,
norm=norm,
num_groups=num_groups,
use_attention=True,
),
ResidualBlock(
now_channels,
now_channels,
dropout,
time_emb_dim=time_emb_dim,
num_classes=num_classes,
activation=activation,
norm=norm,
num_groups=num_groups,
use_attention=False,
),
])

for i, mult in reversed(list(enumerate(channel_mults))):
out_channels = base_channels * mult

for _ in range(num_res_blocks + 1):
self.ups.append(ResidualBlock(
channels.pop() + now_channels,
out_channels,
dropout,
time_emb_dim=time_emb_dim,
num_classes=num_classes,
activation=activation,
norm=norm,
num_groups=num_groups,
use_attention=i in attention_resolutions,
))
now_channels = out_channels

if i != 0:
self.ups.append(Upsample(now_channels))

assert len(channels) == 0

self.out_norm = get_norm(norm, base_channels, num_groups)
self.out_conv = nn.Conv2d(base_channels, img_channels, 3, padding=1)

def forward(self, x, time=None, y=None):
ip = self.initial_pad
if ip != 0:
x = F.pad(x, (ip,) * 4)

if self.time_mlp is not None:
if time is None:
raise ValueError("time conditioning was specified but tim is not passed")

time_emb = self.time_mlp(time)
else:
time_emb = None

if self.num_classes is not None and y is None:
raise ValueError("class conditioning was specified but y is not passed")

x = self.init_conv(x)

skips = [x]

for layer in self.downs:
x = layer(x, time_emb, y)
skips.append(x)

for layer in self.mid:
x = layer(x, time_emb, y)

for layer in self.ups:
if isinstance(layer, ResidualBlock):
x = torch.cat([x, skips.pop()], dim=1)
x = layer(x, time_emb, y)

x = self.activation(self.out_norm(x))
x = self.out_conv(x)

if self.initial_pad != 0:
return x[:, :, ip:-ip, ip:-ip]
else:
return x

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from unet import *
import torch.nn.functional as F

if __name__=="__main__":

activations = {
"relu": F.relu,
"mish": F.mish,
"silu": F.silu,
}

model = UNet(
img_channels=3,

base_channels=64,
channel_mults=(1, 2, 2, 2),
time_emb_dim=512,
norm='gn',
dropout=0.1,
activation=activations['silu'],
attention_resolutions=(1,),

num_classes=10,
initial_pad=0,
)


a = torch.FloatTensor(1,3,32,32)
t = torch.randn(1).long()
y = torch.randn(1).long()
b = model(a,t,y)
pass