Coding-猫狗数据集分类-基于CNN

摘要

训练一个图片分类神经网络(CNN)

文件目录
.
├── train
│ ├── cats
│ └── dogs
└── validation
├── cats
└── dogs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.datasets import ImageFolder


# 定义自定义数据集类
class CustomDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.dataset = ImageFolder(root_dir, transform=transform)

def __len__(self):
return len(self.dataset)

def __getitem__(self, idx):
image, label = self.dataset[idx]
return image, label


# 定义卷积神经网络模型
class CNNModel(nn.Module):
def __init__(self, num_classes):
super(CNNModel, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),

nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),

nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(32 * 3 * 3, 256),
nn.ReLU(inplace=True),
nn.Linear(256, num_classes)
)

def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x


# 设置训练和验证数据集的路径
train_data_path = 'data1/train'
val_data_path = 'data1/validation'

# 定义图像转换
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 创建训练和验证数据集
train_dataset = CustomDataset(train_data_path, transform=transform)
val_dataset = CustomDataset(val_data_path, transform=transform)

# 创建数据加载器
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size)

# 创建模型实例
num_classes = len(train_dataset.dataset.classes)
model = CNNModel(num_classes)

# 计算参数数量
num_params = sum(p.numel() for p in model.parameters())
print("模型参数数量:", num_params)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 设置训练参数
num_epochs = 2000
check_point = 10 #m每10个epoch验证一回
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# 开始训练
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
correct_predictions = 0

for images, labels in train_loader:
images = images.to(device)
labels = labels.to(device)

optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

_, predicted = torch.max(outputs.data, 1)
correct_predictions += (predicted == labels).sum().item()
running_loss += loss.item()

epoch_accuracy = correct_predictions / len(train_dataset)
epoch_loss = running_loss / len(train_loader)
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss:.4f}, Accuracy: {epoch_accuracy:.4f}")

if epoch%check_point == 0 :
# 在验证集上进行评估
model.eval()
total_correct = 0
total_samples = 0

with torch.no_grad():
for images, labels in val_loader:
images = images.to(device)
labels = labels.to(device)

outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total_samples += labels.size(0)
total_correct += (predicted == labels).sum().item()

val_accuracy = total_correct / total_samples
print(f"Validation Accuracy: {val_accuracy:.4f}")