1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
| import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset from torchvision import transforms from torchvision.datasets import ImageFolder
class CustomDataset(Dataset): def __init__(self, root_dir, transform=None): self.dataset = ImageFolder(root_dir, transform=transform)
def __len__(self): return len(self.dataset)
def __getitem__(self, idx): image, label = self.dataset[idx] return image, label
class CNNModel(nn.Module): def __init__(self, num_classes): super(CNNModel, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), ) self.classifier = nn.Sequential( nn.Linear(32 * 3 * 3, 256), nn.ReLU(inplace=True), nn.Linear(256, num_classes) )
def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x
train_data_path = 'data1/train' val_data_path = 'data1/validation'
transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
train_dataset = CustomDataset(train_data_path, transform=transform) val_dataset = CustomDataset(val_data_path, transform=transform)
batch_size = 32 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=batch_size)
num_classes = len(train_dataset.dataset.classes) model = CNNModel(num_classes)
num_params = sum(p.numel() for p in model.parameters()) print("模型参数数量:", num_params)
criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001)
num_epochs = 2000 check_point = 10 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device)
for epoch in range(num_epochs): model.train() running_loss = 0.0 correct_predictions = 0
for images, labels in train_loader: images = images.to(device) labels = labels.to(device)
optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step()
_, predicted = torch.max(outputs.data, 1) correct_predictions += (predicted == labels).sum().item() running_loss += loss.item()
epoch_accuracy = correct_predictions / len(train_dataset) epoch_loss = running_loss / len(train_loader) print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss:.4f}, Accuracy: {epoch_accuracy:.4f}")
if epoch%check_point == 0 : model.eval() total_correct = 0 total_samples = 0
with torch.no_grad(): for images, labels in val_loader: images = images.to(device) labels = labels.to(device)
outputs = model(images) _, predicted = torch.max(outputs.data, 1) total_samples += labels.size(0) total_correct += (predicted == labels).sum().item()
val_accuracy = total_correct / total_samples print(f"Validation Accuracy: {val_accuracy:.4f}")
|