1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
| import argparse import os import numpy as np import math
import torchvision.transforms as transforms from torchvision.utils import save_image
from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable
import torch.nn as nn import torch.nn.functional as F import torch
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser() parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training") parser.add_argument("--batch_size", type=int, default=64, help="size of the batches") parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient") parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation") parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space") parser.add_argument("--n_classes", type=int, default=10, help="number of classes for dataset") parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension") parser.add_argument("--channels", type=int, default=1, help="number of image channels") parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling") opt = parser.parse_args() print(opt)
img_shape = (opt.channels, opt.img_size, opt.img_size)
cuda = True if torch.cuda.is_available() else False
class Generator(nn.Module): def __init__(self): super(Generator, self).__init__()
self.label_emb = nn.Embedding(opt.n_classes, opt.n_classes)
def block(in_feat, out_feat, normalize=True): layers = [nn.Linear(in_feat, out_feat)] if normalize: layers.append(nn.BatchNorm1d(out_feat, 0.8)) layers.append(nn.LeakyReLU(0.2, inplace=True)) return layers
self.model = nn.Sequential( *block(opt.latent_dim + opt.n_classes, 128, normalize=False), *block(128, 256), *block(256, 512), *block(512, 1024), nn.Linear(1024, int(np.prod(img_shape))), nn.Tanh() )
def forward(self, noise, labels): gen_input = torch.cat((self.label_emb(labels), noise), -1) img = self.model(gen_input) img = img.view(img.size(0), *img_shape) return img
class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__()
self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes)
self.model = nn.Sequential( nn.Linear(opt.n_classes + int(np.prod(img_shape)), 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 1), )
def forward(self, img, labels): d_in = torch.cat((img.view(img.size(0), -1), self.label_embedding(labels)), -1) validity = self.model(d_in) return validity
adversarial_loss = torch.nn.MSELoss()
generator = Generator() discriminator = Discriminator()
if cuda: generator.cuda() discriminator.cuda() adversarial_loss.cuda()
os.makedirs("../../data/mnist", exist_ok=True) dataloader = torch.utils.data.DataLoader( datasets.MNIST( "../../data/mnist", train=True, download=True, transform=transforms.Compose( [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])] ), ), batch_size=opt.batch_size, shuffle=True, )
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
def sample_image(n_row, batches_done): """Saves a grid of generated digits ranging from 0 to n_classes""" z = Variable(FloatTensor(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim)))) labels = np.array([num for _ in range(n_row) for num in range(n_row)]) labels = Variable(LongTensor(labels)) gen_imgs = generator(z, labels) save_image(gen_imgs.data, "images/%d.png" % batches_done, nrow=n_row, normalize=True)
for epoch in range(opt.n_epochs): for i, (imgs, labels) in enumerate(dataloader):
batch_size = imgs.shape[0]
valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False) fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)
real_imgs = Variable(imgs.type(FloatTensor)) labels = Variable(labels.type(LongTensor))
optimizer_G.zero_grad()
z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim)))) gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, batch_size)))
gen_imgs = generator(z, gen_labels)
validity = discriminator(gen_imgs, gen_labels) g_loss = adversarial_loss(validity, valid)
g_loss.backward() optimizer_G.step()
optimizer_D.zero_grad()
validity_real = discriminator(real_imgs, labels) d_real_loss = adversarial_loss(validity_real, valid)
validity_fake = discriminator(gen_imgs.detach(), gen_labels) d_fake_loss = adversarial_loss(validity_fake, fake)
d_loss = (d_real_loss + d_fake_loss) / 2
d_loss.backward() optimizer_D.step()
print( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item()) )
batches_done = epoch * len(dataloader) + i if batches_done % opt.sample_interval == 0: sample_image(n_row=10, batches_done=batches_done)
|