1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
| import argparse import os import numpy as np import math import itertools import sys
import torchvision.transforms as transforms from torchvision.utils import save_image, make_grid
from torch.utils.data import DataLoader from torch.autograd import Variable
from models import * from datasets import *
import torch.nn as nn import torch.nn.functional as F import torch
os.makedirs("/home/myself/work/work-generate/srgan/images", exist_ok=True) os.makedirs("/home/myself/work/work-generate/srgan/saved_models", exist_ok=True)
parser = argparse.ArgumentParser() parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from") parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training") parser.add_argument("--dataset_name", type=str, default="data", help="name of the dataset") parser.add_argument("--batch_size", type=int, default=4, help="size of the batches") parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient") parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay") parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation") parser.add_argument("--hr_height", type=int, default=512, help="high res. image height") parser.add_argument("--hr_width", type=int, default=512, help="high res. image width") parser.add_argument("--channels", type=int, default=3, help="number of image channels") parser.add_argument("--sample_interval", type=int, default=100, help="interval between saving image samples") parser.add_argument("--checkpoint_interval", type=int, default=20, help="interval between model checkpoints") opt = parser.parse_args() print(opt)
cuda = torch.cuda.is_available()
hr_shape = (opt.hr_height, opt.hr_width)
generator = GeneratorResNet() discriminator = Discriminator(input_shape=(opt.channels, *hr_shape)) feature_extractor = FeatureExtractor()
feature_extractor.eval()
criterion_GAN = torch.nn.MSELoss() criterion_content = torch.nn.L1Loss()
if cuda: generator = generator.cuda() discriminator = discriminator.cuda() feature_extractor = feature_extractor.cuda() criterion_GAN = criterion_GAN.cuda() criterion_content = criterion_content.cuda()
if opt.epoch != 0: generator.load_state_dict(torch.load("/home/myself/work/work-generate/srgan/saved_models/generator_%d.pth")) discriminator.load_state_dict(torch.load("/home/myself/work/work-generate/srgan/saved_models/discriminator_%d.pth"))
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
Tensor = torch.cuda.FloatTensor if cuda else torch.Tensor
dataloader = DataLoader( ImageDataset("/home/myself/work/work-generate/%s" % opt.dataset_name, hr_shape=hr_shape), batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu, )
def main(): for epoch in range(opt.epoch, opt.n_epochs): for i, imgs in enumerate(dataloader):
imgs_lr = Variable(imgs["lr"].type(Tensor)) imgs_hr = Variable(imgs["hr"].type(Tensor))
valid = Variable(Tensor(np.ones((imgs_lr.size(0), *discriminator.output_shape))), requires_grad=False) fake = Variable(Tensor(np.zeros((imgs_lr.size(0), *discriminator.output_shape))), requires_grad=False)
optimizer_G.zero_grad()
gen_hr = generator(imgs_lr)
loss_GAN = criterion_GAN(discriminator(gen_hr), valid)
gen_features = feature_extractor(gen_hr) real_features = feature_extractor(imgs_hr) loss_content = criterion_content(gen_features, real_features.detach())
loss_G = loss_content + 1e-3 * loss_GAN
loss_G.backward() optimizer_G.step()
optimizer_D.zero_grad()
loss_real = criterion_GAN(discriminator(imgs_hr), valid) loss_fake = criterion_GAN(discriminator(gen_hr.detach()), fake)
loss_D = (loss_real + loss_fake) / 2
loss_D.backward() optimizer_D.step()
sys.stdout.write( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, opt.n_epochs, i, len(dataloader), loss_D.item(), loss_G.item()) )
batches_done = epoch * len(dataloader) + i if batches_done % opt.sample_interval == 0: imgs_lr = nn.functional.interpolate(imgs_lr, scale_factor=4) gen_hr = make_grid(gen_hr, nrow=1, normalize=True) imgs_lr = make_grid(imgs_lr, nrow=1, normalize=True) img_grid = torch.cat((imgs_lr, gen_hr), -1) save_image(img_grid, "/home/myself/work/work-generate/srgan/images/%d.png" % batches_done, normalize=False)
if opt.checkpoint_interval != -1 and epoch % opt.checkpoint_interval == 0: torch.save(generator.state_dict(), "/home/myself/work/work-generate/srgan/saved_models/generator_%d.pth" % epoch) torch.save(discriminator.state_dict(), "/home/myself/work/work-generate/srgan/saved_models/discriminator_%d.pth" % epoch)
if __name__ == '__main__': main()
|