Coding-GAN-生成对抗网络-基于RGB图片数据

摘要

gan.py用于训练网络
图片数据放在/home/myself/work/work-generate/data/data下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import argparse
import os
import numpy as np
import math

import torchvision.transforms as transforms
from torchvision.utils import save_image

from torch.utils.data import Dataset,DataLoader
from torchvision import datasets
from torch.autograd import Variable

import torch.nn as nn
import torch.nn.functional as F
import torch
from torchvision.datasets import ImageFolder


from PIL import Image
import torchvision.models as models

# 加载预训练的VGG模型
vgg = models.vgg16(pretrained=True)
os.makedirs("/home/myself/work/work-generate/images", exist_ok=True)

parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=2000, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=32, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=1000, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=128, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)


# 自定义数据集类
class CustomImageDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.images = [f for f in os.listdir(root_dir) if f.endswith('.jpg')]

def __len__(self):
return len(self.images)

def __getitem__(self, idx):
img_path = os.path.join(self.root_dir, self.images[idx])
image = Image.open(img_path).convert("RGB") # 确保图片是RGB模式

if self.transform:
image = self.transform(image)

return image

class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()

def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers

self.model = nn.Sequential(
*block(opt.latent_dim, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh()
)

def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), *img_shape)
return img


class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()

self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid(),
)

def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)

return validity


img_shape = (opt.channels, opt.img_size, opt.img_size)

cuda = True if torch.cuda.is_available() else False





# Loss function
adversarial_loss = torch.nn.BCELoss()

# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()

if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()

# Configure data loader

# 图像预处理
transform = transforms.Compose([
transforms.Resize((opt.img_size, opt.img_size)), # 确保这与模型输入尺寸匹配
transforms.ToTensor(), # 将PIL Image转换为Tensor
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # 归一化
])

# 创建数据集实例
dataset = CustomImageDataset(root_dir='/home/myself/work/work-generate/data', transform=transform)

# 创建DataLoader实例
dataloader = DataLoader(
dataset,
batch_size=opt.batch_size, # 使用您之前定义的批处理大小
shuffle=True, # 在每个epoch开始时打乱数据
num_workers=opt.n_cpu, # 使用指定数量的CPU线程加载数据
)


# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor




def main():


# ----------
# Training
# ----------

for epoch in range(opt.n_epochs):
for i, imgs in enumerate(dataloader):

# Adversarial ground truths
valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)

# Configure input
real_imgs = Variable(imgs.type(Tensor))

# -----------------
# Train Generator
# -----------------

optimizer_G.zero_grad()

# Sample noise as generator input
z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))

# Generate a batch of images
gen_imgs = generator(z)

# Loss measures generator's ability to fool the discriminator
g_loss = adversarial_loss(discriminator(gen_imgs), valid)

g_loss.backward()
optimizer_G.step()

# ---------------------
# Train Discriminator
# ---------------------

optimizer_D.zero_grad()

# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(discriminator(real_imgs), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
d_loss = (real_loss + fake_loss) / 2

d_loss.backward()
optimizer_D.step()

print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
)

batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
save_image(gen_imgs.data[:25], "/home/myself/work/work-generate/images/%d.png" % batches_done, nrow=5, normalize=True)


if __name__ == '__main__':
main()